

ASSOCIATED PLATING COMPANY

Third Quarter 2006 Groundwater Monitoring Report

Associated Plating Company, 9636 Ann Street, Santa Fe Springs, California

H0287D

16 October 2006

Environment & Water Resources

5455 Garden Grove Blvd., 2nd Floor Westminster, CA 92683 USA Telephone: +1 714 379 1157 Facsimile: +1 714 379 1160 worleyparsons.com

© Copyright 2006 WorleyParsons Komex

Lee Paprocki, a California Professional Geologist, as an employee of WorleyParsons Komex, with expertise in contaminant assessment and remediation, and groundwater hydrology, has reviewed the report with the title **Third Quarter 2006 Groundwater Monitoring Report, APC Facility, 9636 Ann Street, Santa Fe Springs, California**. Her signature and stamp appear below.

Lee Paprocki
Professional Geologist 7749

Disclaimer

The information presented in this document was compiled and interpreted exclusively for the purposes stated in Section 1 of the document. WorleyParsons Komex provided this report for Associated Plating Company solely for the purpose noted above.

WorleyParsons Komex has exercised reasonable skill, care, and diligence to assess the information acquired during the preparation of this report, but makes no guarantees or warranties as to the accuracy or completeness of this information. The information contained in this report is based upon, and limited by, the circumstances and conditions acknowledged herein, and upon information available at the time of its preparation. The information provided by others is believed to be accurate but cannot be guaranteed.

WorleyParsons Komex does not accept any responsibility for the use of this report for any purpose other than that stated in Section 1 and does not accept responsibility to any third party for the use in whole or in part of the contents of this report. Any alternative use, including that by a third party, or any reliance on, or decisions based on this document, is the responsibility of the alternative user or third party.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of WorleyParsons Komex.

CONTENTS

1.		INTRODUCTION	1
	1.1	Geology and Hydrogeology	1
		1.1.1 Regional Geology and Hydrogeology	1
		1.1.2 Site Geology	2
		1.1.3 Site Hydrogeology	3
	1.2	Site Conceptual Model	3
2.		GROUNDWATER SAMPLING	4
	2.1	Groundwater Gauging and Sampling Procedures	4
	2.2	Waste Disposal	4
	2.3	Quality Assurance/Quality Control Sampling	4
	2.4	Laboratory Analyses	4
3.		GROUNDWATER RESULTS	6
	3.1	Groundwater Results	6
	3.2	QA/QC Analytical Results	6
4.		CONCLUSIONS AND RECOMMENDATIONS	8
	4.1	Conclusions	8
	4.2	Recommendations	8
5.		CLOSURE	9
6		REFERENCES	10

resources & energy

ASSOCIATED PLATING COMPANY THIRD QUARTER 2006 GROUNDWATER MONITORING REPORT ASSOCIATED PLATING COMPANY, 9636 ANN STREET, SANTA FE SPRINGS, CALIFORNIA

Tables

- 1 Monitoring Well Construction Details
- 2 Groundwater Elevations
- 3 TPH Carbon Range Groundwater Results
- 4 VOC Groundwater Results
- 5 Field Quality Assurance/Quality Control Sample Results

Figures

- 1 Site Location Map
- 2 Site Vicinity Map
- 3 Site Plan Showing Borehole and Monitoring Well Locations
- 4 Site Conceptual Model and Proposed Operable Units
- 5 Potentiometric Surface Contour Map August 31, 2006
- 6 TPH Concentrations in Groundwater August 2006
- 7 Select Chlorinated Solvent Concentrations in Groundwater August 2006

Appendices

- A Monitoring Well Sampling Forms
- B Laboratory Analytical Report

LIST OF ACRONYMS AND ABBREVIATIONS

APC Associated Plating Company

bgs below ground surface

cis-1,2-DCE cis-1,2-dichloroethene

DOT Department of Transportation

DTSC Department of Toxic Substances Control

DWR Department of Water Resources

ft/ft feet per foot

LNAPL light non-aqueous phase liquid

MSL mean sea level

ug/L micrograms per liter

mg/L milligrams per liter

ml milliliter

QA quality assurance

QC quality control

PCE tetrachloroethene

TCE trichloroethene

TPH total petroleum hydrocarbons

USEPA United States Environmental Protection Agency

VC vinyl chloride

VOA volatile organic analysis

VOCs volatile organic compounds

1. INTRODUCTION

This document has been prepared by WorleyParsons Komex on behalf of the Associated Plating Company (APC). The report summarizes the groundwater sampling and well surveying conducted at 9636 Ann Street, Santa Fe Springs, California (herein referred to as the Site). The Site is located in Santa Fe Springs, California at an elevation of approximately 150 feet above mean sea level (MSL) with a local topographic gradient of less than 20 feet per mile to the southeast (**Figures 1 and 2**). Monitoring wells, MW-1 through MW-4, were installed at the Site on April 5 and 6, 2006 (**Table 1**) and were first sampled a week later (**Figure 3**).

Groundwater sampling and analysis completed at the Site during April 2006 identified the presence of chlorinated solvents and petroleum hydrocarbons.

The Department of Toxic Substances Control (DTSC), in their letter dated December 14, 2005 and in a meeting on August 22, 2006, requested that quarterly groundwater sampling be continued for one year. Therefore, third quarter groundwater sampling was conducted in August 2006 and is summarized in this report.

1.1 Geology and Hydrogeology

1.1.1 Regional Geology and Hydrogeology

Los Angeles County is underlain by the Los Angeles County Coastal Plain and is bounded by the Santa Monica Mountains to the north, the low lying Elysian, Repetto, Merced, and Puente Hills to the northeast, a political boundary coinciding with the boundary between Los Angeles County and Orange County to the southeast, and the Pacific Ocean to the southwest. Alluvial fans formed by the Los Angeles, Rio Hondo, and San Gabriel Rivers systems have coalesced to form the Downey Plain, which represents the largest area of recent alluvial deposition in the Coastal Plain. The Downey Plain is bordered by the La Brea, Montebello, and Santa Fe Spring Plains, and the Coyote hills to the north and northeast, the Newport Inglewood uplift to the southwest, and the Coastal Plain of Orange County to the southeast (DWR, 1961). The Downey Plain slopes gently to the south with an average gradient of less than 18 feet per mile. The Site is located between the Downey Plain and the Santa Fe Springs Plain. The Santa Fe Springs Plain is located south of Whittier and east of the San Gabriel River, in the area of the City of Santa Fe Springs. The Santa Fe Springs Plain is a low, slightly rolling topographic feature and represents a continuation of the Coyote Hills Uplift to the southeast.

The Coastal Plain of Los Angeles County is a deep groundwater reservoir filled by unconsolidated alluvial sands, gravels, clays, and silts. Fresh-water aquifers extend to depths of over 2,000 feet. The California Department of Water Resources (DWR) divided the coastal plain into four groundwater basins: the Santa Monica Basin, the West Coast Basin, the Hollywood Basin, and the Central Basin (DWR, 1961). The Site lies within the Central Basin, which is further divided into four parts for descriptive purposes: the Los Angeles Forebay Area, the Montebello Forebay Area, the Whittier Area, and the Central Basin Pressure Area.

The Site is located in the Central Basin Pressure Area. The Central Basin Pressure Area is called a "pressure area" because the aquifers within it are confined by aquicludes over most of the area. The major regional aquitards and aquifers beneath the Site occur in the Recent Alluvium, the Upper Pleistocene Lakewood Formation, and the Lower Pleistocene San Pedro Formation. Depth intervals for the major regional hydro-stratigraphic units (aquitards and aquifers) in the Site vicinity are presented in the table below:

Regional Hydro-stratigraphic Unit	Formation	Approximate Depth Intervals (feet below ground surface)
Bellflower Aquitard	Recent Alluvium	0 – 30
Gaspur	Recent Alluvium	30 – 65
Gage	Lakewood	65 – 110
Hollydale-Jefferson	San Pedro	110 - 130
Lynwood	San Pedro	130 – 210
Silverado	San Pedro	210 – 360
Sunnyside	San Pedro	360 - 610

1.1.2 Site Geology

The Site is underlain with artificial fill composed primarily of silt from the ground surface to an approximate depth of 7 feet below ground surface (bgs). At approximately 7 feet bgs a concrete pad is encountered, which is approximately four inches thick. Underlying the concrete pad is a silt and clay layer that extends to approximately 25 feet bgs. Below the silt and clay layer is a sand and gravelly

sand layer that extends to at least 48 feet bgs (**Figure 4**). Both the silt and clay layer and the sand and gravel layer correspond to the Recent Alluvium.

1.1.3 Site Hydrogeology

In April 2006, first groundwater was detected between 34 and 38 feet bgs (approximately 112 feet MSL) and corresponds to the Gaspur Aquifer. In August 2006, water levels have since risen slightly to between 33 and 37 feet bgs. Groundwater flow varies between the south-southwest and south-southeast at an approximate gradient of 0.001 feet per foot (ft/ft).

1.2 Site Conceptual Model

In accordance with the Site conceptual model developed below, the subsurface at the Site and Site vicinity was previously divided into three operable units: Operable Unit 1 (OU-1), Operable Unit 2 (OU-2), and Operable Unit 3 (OU-3) (**Figure 4**). OU-1 consists of fill material underlying the Site from ground surface to the top of the buried concrete pad (approximately 7 feet below ground surface). OU-2 consists of on-Site soils and the first groundwater zone, from the base of the concrete pad to approximately 50 feet below ground surface (bgs). OU-3 consists of the off-Site soils and the first groundwater zone.

Fill material in OU-1 is impacted by petroleum hydrocarbons (C7 to C36), fuel volatile organic compounds (VOCs), probably representing pre-existing contamination from the former storage tank, and chlorinated solvent compounds, consistent with releases of tetrachloroethylene (PCE) from the APC facility.

2. GROUNDWATER SAMPLING

2.1 Groundwater Gauging and Sampling Procedures

Well construction details for the four groundwater monitoring wells (MW-1 through MW-4) are included in **Table 1**. On August 31, 2006, the four monitoring wells were gauged and then purged and sampled. Following gauging, the wells were purged of at least three well volumes of water, allowed to recover, and then sampled using an electric submersible pump. Groundwater gauging and sampling field notes are provided in **Appendix A**.

2.2 Waste Disposal

Waste generated as part of this investigation included purged groundwater and decontamination water used during sampling. Water was contained in one Department of Transportation (DOT) approved 55-gallon drum and temporarily stored at the Site prior to disposal. The drum of groundwater and decontamination water will be removed from the Site and transported to a suitable off-Site disposal facility by a licensed non-hazardous waste hauler.

2.3 Quality Assurance/Quality Control Sampling

Field quality assurance/quality control (QA/QC) samples were collected on August 31, 2006, during groundwater sampling activities. An equipment rinsate blank was collected from the electric submersible pump by running distilled water through the pump into three 40-milliliter (ml) volatile organic analysis (VOA) vials. A field blank was collected by filling three 40 ml VOA vials with distilled water, leaving them exposed to ambient air during collection of the equipment blank, and then sealing them. A trip blank, consisting of two sealed 40 ml VOA vials with distilled water, was obtained from the laboratory and kept in the ice-chest throughout the day to evaluate if there was any introduction of contaminants during storage and transportation.

2.4 Laboratory Analyses

Monitoring well groundwater samples and QA/QC samples were labeled, placed in an ice chest, and delivered under chain of custody to Sierra Analytical Inc. of Laguna Hills, California, within 24 hours of collection. The samples were analyzed for the following:

- Total petroleum hydrocarbons (TPH), ranging from C7 to C36, in accordance with United States
 Environmental Protection Agency (USEPA) Method 8015B; and
- VOCs in accordance with USEPA Method 8260B.

3. GROUNDWATER RESULTS

3.1 Groundwater Results

Groundwater depths in the four monitoring wells ranged from 33.03 to 37.04 feet bgs (**Table 2**). During this sampling event, groundwater flow was generally towards the south-southeast at a gradient of 0.0009 ft/ft (**Figure 3**).

A sheen of light non-aqueous phase liquid (LNAPL) was observed on the water level probe in three of the wells, MW-1, MW-2, and MW-4. Groundwater collected from well MW-3 had a hydrocarbon odor, but no LNAPL was observed.

Groundwater gauging and laboratory analytical results are provided in **Tables 2 and 3**, respectively. The complete laboratory report, including chain of custody and laboratory QA/QC analyses, is provided in **Appendix B**.

Petroleum hydrocarbons were detected in groundwater in four monitoring wells, MW-1, MW-2, MW-3, and MW-4 (**Figure 6**); however, the TPH concentrations in every well were significantly less than the previously recorded April concentrations. The maximum concentration of TPH decreased from 65 milligrams per liter (mg/L) in April to 16 mg/L in well MW-1 (**Table 3**). The minimum TPH concentration also decreased, from 46 mg/L to 2.1 mg/L in well MW-3. The lateral distribution of TPH in groundwater for this sampling event is depicted in **Figure 4**.

Chlorinated solvents were detected in every well (**Figure 7**). Since April 2006, the concentration of trichloroethene (TCE) in upgradient well MW-1 have increased from 1.3 micrograms per liter (ug/L) to 21 ug/L. Vinyl chloride (VC) concentrations in groundwater collected from well MW-1 have decreased from 20 ug/L in April 2006 to 9.9 ug/L in August. Otherwise, chlorinated solvent concentrations in groundwater collected from wells MW-1 through MW-4 have remained fairly constant.

3.2 QA/QC Analytical Results

The results of QA/QC sample analyses are provided in **Table 4**. Groundwater laboratory QA/QC samples for TPH and chlorinated solvents were generally within acceptable levels. A review of the laboratory analytical report indicates that all internal laboratory QA/QC calibration checks, matrix spike, and matrix spike duplicate recoveries were within acceptable ranges (**Appendix B**). Chlorinated

solvents and TPH were not detected in the equipment rinsate blank, field blank or trip blank. However, chloroform was detected in the field blank at the reporting limit of 1.0 ug/L. Chloroform is a common lab contaminant and was not detected in any of the groundwater samples. In addition, isopropylbenzene was detected at 2.3 ug/L in the equipment blank. The isopropylbenzene concentration was considered insignificant since concentrations of isopropylbenzene detected in groundwater were 25 times greater than the concentration detected in the equipment blank. During this sampling event, the equipment blank was collected from the sampling pump. The pump was cleaned before sampling and between each well by pumping it with water from a three bucket decon rinse system: the first bucket contained distilled water and a non-phosphate detergent, and the second and third bucket contained tap water only. Groundwater results are deemed acceptable for the following reasons: standard decontamination practices were followed, chlorinated solvents are the primary contaminants of concern, and they were not detected in any of the sampling blanks.

4. CONCLUSIONS AND RECOMMENDATIONS

4.1 Conclusions

In August 2006, groundwater flow beneath the Site was towards the south-southeast at a gradient of 0.0009 ft/ft, and depth to groundwater ranged from to 33.03 to 37.04 feet bgs (113.73 to 113.90 feet MSL).

In August 2006, the TPH concentrations detected in groundwater beneath the Site have generally decreased. TCE concentrations collected in groundwater from upgradient well MW-1 have generally increased and VC concentrations have decreased. Otherwise, chlorinated solvent concentrations detected in groundwater collected from wells MW-1 through MW-4 have remained fairly constant.

4.2 Recommendations

In accordance with the DTSC's request, three additional quarterly groundwater sampling events should be conducted to analyze the contaminant trends.

5. CLOSURE

We trust that this report satisfies your current requirements and provides suitable documentation for your records. If you have any questions or require further details, please contact the undersigned at any time.
Respectfully Submitted: WorleyParsons Komex
Lindsay Masters Staff Geologist
Senior Review by

Lee Paprocki, PG

Project Manager

6. REFERENCES

DWR, 1961. Planned Utilization of the Ground Water Basins of the Coastal Plain of Los Angeles County. Bulletin No. 104. Appendix A Ground Water Geology. State of California Department of Water Resources Southern District. Dated June 1961.

WorleyParsons Komex

resources & energy

Table 1Monitoring Well Construction Details
Associated Plating Company

Well ID	Drilling Method	Installation Date	Well Casing Diameter (inches)	Latitude	Longitude	Wellhead Elevation (feet amsl)	Top of Casing Elevation (ft amsl)	Well Depth (feet bgs)	Well Depth (feet amsl)	Screen Slot Size (inches)	Screened Interval (feet bgs)	Screened Interval (feet amsl)
MW-1	HSA	4/5/2006	2	33.9527753	-118.05925	147.36	146.93	43.0	103.9	0.01	33 to 43	114.35 to 104.35
MW-2	HSA	4/5/2006	2	33.9524570	-118.05920	149.81	149.41	47.0	102.4	0.01	37 to 47	112.79 to 102.79
MW-3	HSA	4/6/2006	2	33.9523123	-118.05931	151.06	150.67	47.0	103.7	0.01	37 to 47	114.04 to 104.04
MW-4	HSA	4/6/2006	2	33.9522795	-118.05949	151.13	150.77	47.0	104.1	0.01	37 to 47	114.13 to 104.13

- 1) amsl = above mean sea level
- 2) bgs = below ground surface
- 3) HSA = hollow stem auger

Table 2
Groundwater Elevations

Associated Plating Company

Well ID	Top of Casing Elevation (feet amsl)	Date	Depth to Groundwater (feet btoc)	Groundwater Elevation (feet amsl)
MW-1	146.93	04/12/06	34.33	112.60
		08/31/06	33.03	113.90
MW-2	149.41	04/12/06	36.87	112.54
		08/31/06	35.62	113.79
MW-3	150.67	04/12/06	38.20	112.47
		08/31/06	36.89	113.78
MW-4	150.77	04/12/06	38.36	112.41
		08/31/06	37.04	113.73

- 1) bgs = Below ground surface
- 2) amsl = above mean sea level
- 3) btoc = below top of casing

Table 3TPH Carbon Range Groundwater Results
Associated Plating Company

		MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4
Analyte	Units	4/12/06	8/31/06	4/12/06	8/31/06	4/12/06	8/31/06	4/12/06	8/31/06
<c8< td=""><td>mg/L</td><td><0.10</td><td><0.10</td><td><1.0</td><td>0.11</td><td><1.0</td><td>0.051</td><td><1.0</td><td>0.084</td></c8<>	mg/L	<0.10	<0.10	<1.0	0.11	<1.0	0.051	<1.0	0.084
C8-C9	mg/L	<0.10	<0.10	<1.0	0.040	<1.0	0.014	<1.0	0.031
C9-C10	mg/L	<0.10	<0.10	1.1	0.073	<1.0	0.030	<1.0	0.056
C10-C11	mg/L	0.33	0.13	2.0	0.16	<1.0	0.076	<1.0	0.13
C11-C12	mg/L	0.66	0.20	2.8	0.14	<1.0	0.087	<1.0	0.17
C12-C14	mg/L	5.1	1.2	5.9	0.70	<1.0	0.26	1.8	0.40
C14-C16	mg/L	6.7	1.6	5.8	0.76	1.5	0.34	5.4	0.56
C16-C18	mg/L	6.8	1.6	5.0	0.63	<1.0	0.24	4.4	0.39
C18-C20	mg/L	4.1	0.94	3.6	0.54	1.1	0.19	4.0	0.27
C20-C24	mg/L	12	2.4	7.0	1.1	<1.0	0.29	5.2	0.48
C24-C28	mg/L	16	4.2	7.1	1.3	2.6	0.31	9.6	0.57
C28-C32	mg/L	12	3.9	10	1.1	35	0.23	27	0.46
>C32	mg/L	0.65	0.28	3.5	0.046	4.3	0.015	2.6	0.030
Total C7-C36	mg/L	65	16	54	6.7	46	2.1	60	3.6

¹⁾ TPH = total petroleum hydrocarbons (carbon range) analyzed using EPA Method 8015B

²⁾ mg/L = milligrams per liter

³⁾ <0.10 = compound not detected at or above the indicated laboratory reporting limit

⁴⁾ Bold type indicates compound was detected.

Table 4
VOC Groundwater Results
Associated Plating Company

		Location	MW-1	MW-1	MW-2	MW-2	MW-3	MW-3	MW-4	MW-4
Analyte	Units	Date	4/12/06	8/31/06	4/12/06	8/31/06	4/12/06	8/31/06	4/12/06	8/31/06
1,1,1,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	ug/L		<1.0	<1.0	1.1	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
1,2,4-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	23	3.4	<1.0	<1.0
1,2-Dibromo-3-Chloropropane (DBCP)	ug/L		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2-Dibromoethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	6.3	1.2	<1.0	<1.0
1,3-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Phenylbutane	ug/L		<1.0	<1.0	16	12	16	11	16	13
4-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	ug/L ug/L		1.3	<1.0	2.3	3.1	2.0	3.7	3.6	7.6
						<1.0				<1.0
Bromobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromodichloromethane	ug/L		<1.0	<1.0	<1.0		<1.0	<1.0	<1.0	
Bromomethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Butylbenzene,n-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Tetrachloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
CFC-12	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Chlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorodibromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloroethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Chloroform	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chloromethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
cis-1,2-Dichloroethene (cis 1,2-DCE)	ug/L		5.5	8.4	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cymene	ug/L		3.2	1.8	4.1	3.2	1.4	<1.0	4.1	<1.0
Dibromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diisopropyl Ether (DIPE)	ug/L			<1.0		<1.0		<1.0		<1.0
Ethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	21	3.1	1.5	<1.0
Ethyl-tert-butyl Ether (ETBE)	ug/L			<1.0		<1.0		<1.0		<1.0
Hexachloro-1,3-Butadiene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Isopropylbenzene	ug/L		1.9	<1.0	75	57	83	74	86	87
Methylene Chloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl-tert-Butyl Ether (MTBE)	ug/L		8.9	2.0	3.5	3.0	1.9	2.2	3.0	2.8
Naphthalene	ug/L		1.6	<1.0	16	12	46	8.7	4.5	1.9
Propylbenzene,n-	ug/L		<1.0	<1.0	9.4	3.5	22	5.3	10	8.9
Styrene (Monomer)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
tert-amyl-methyl Ether (TAME)	ug/L			<1.0		<1.0		<1.0		<1.0
tert-butyl Alcohol (TBA)	ug/L			<5.0		<5.0		<5.0		<5.0
tert-Butylbenzene	ug/L		1.6	<1.0	1.9	1.7	<1.0	3.4	<1.0	1.4
Tetrachloroethene (PCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	2.7	1.2
Toluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	1.6	<1.0	<1.0
trans-1,2-Dichloroethene	ug/L ug/L		5.2	3.6	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,3-Dichloropropene			<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
· · ·	ug/L									
Tribromomethane Trichloroothono (TCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE)	ug/L		1.3	21	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Vinyl Chloride (VC)	ug/L		20	9.9	50	47	53	58	57	54
Xylene, O-	ug/L		<1.0	<1.0	<1.0	<1.0	2.6	<1.0	<1.0	<1.0
Xylene, P-, M-	ug/L		<1.0	<1.0	<1.0	<1.0	28	3.1	<1.0	<1.0

¹⁾ VOC = volatile organic compounds analyzed using EPA Method 8260B

²⁾ ug/L = micrograms per liter

³⁾ <1.0 = compound not detected at or above the indicated laboratory reporting limit

^{4) -- =} not analyzed

⁵⁾ Bold type indicates compound was detected.

Table 5
Field Quality Assurance/Quality Control Sample Results
Associated Plating Company

	Sample Type Equipment Blank		ent Blank	Field	Blank	Trip Blank		
		Sample Date	4/12/06	8/31/06	4/12/06	8/31/06	4/12/06	8/31/06
Analyte	Units	Sample ID	EB-41206	EB083106	FB-41206	FB083106	TB-41206	TB083106
TPH - Carbon Range								
>C32	mg/L		<0.010	<0.010	<0.010	<0.010		
Total C7-C36	mg/L		<0.050	<0.050	<0.050	<0.050		
C28-C32	mg/L		<0.010	<0.010	<0.010	<0.010		
C24-C28	mg/L		<0.010	<0.010	<0.010	<0.010		
C20-C24	mg/L		<0.010	<0.010	<0.010	<0.010		
C18-C20	mg/L		<0.010	<0.010	<0.010	<0.010		
C16-C18	mg/L		<0.010	<0.010	<0.010	<0.010		
C12-C14	mg/L		<0.010	<0.010	<0.010	<0.010		
C11-C12	mg/L		<0.010	<0.010	<0.010	<0.010		
C10-C11	mg/L		<0.010	<0.010	<0.010	<0.010		
C9-C10	mg/L		<0.010	<0.010	<0.010	<0.010		
C8-C9	mg/L		<0.010	<0.010	<0.010	<0.010		
C14-C16	mg/L		<0.010	<0.010	<0.010	<0.010		
<c8< td=""><td>mg/L</td><td></td><td><0.010</td><td><0.010</td><td><0.010</td><td><0.010</td><td></td><td></td></c8<>	mg/L		<0.010	<0.010	<0.010	<0.010		
VOCs								
2-Phenylbutane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
I,2-Dichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
I,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3,5-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,3-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,4-Dichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromoethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
2,2-Dichloropropane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2-Dibromo-3-Chloropropane (DBCP)	ug/L		<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,2,4-Trimethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,4-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,2,3-Trichloropropane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
1,2,3-Trichlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Benzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1-Trichloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,1,2-Tetrachloroethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloropropylene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tetrachloroethene (PCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
sopropylbenzene	ug/L		<1.0	2.3	<1.0	<1.0	<1.0	<1.0
Methylene Chloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Methyl-tert-Butyl Ether (MTBE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Naphthalene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Propylbenzene,n-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Styrene (Monomer)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ert-amyl-methyl Ether (TAME)	ug/L			<1.0		<1.0		<1.0
4-Chlorotoluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ert-Butylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Ethylbenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Toluene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
trans-1,2-Dichloroethene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
rans-1,3-Dichloropropene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Tribromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Trichloroethene (TCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
/inyl Chloride (VC)	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Xylene, O-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
ert-butyl Alcohol (TBA)	ug/L			<5.0		<5.0		<5.0
Chloroethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Bromodichloromethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Bromomethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Butylbenzene,n-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Carbon Tetrachloride	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
CFC-11	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
CFC-12	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
Chlorobenzene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Hexachloro-1.3-Butadiene	ug/L ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorodibromomethane	ug/L ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
			<1.0		<1.0	<1.0	<1.0	
Ethyl-tert-butyl Ether (ETBE)	ug/L			<1.0				<1.0
Chloroform	ug/L		<1.0	<1.0	<1.0	1.0	<1.0	<1.0
Chloromethane	ug/L		<5.0	<1.0	<5.0	<1.0	<5.0	<1.0
cis-1,2-Dichloroethene (cis 1,2-DCE)	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis-1,3-Dichloropropene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Cymene	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Dibromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Diisopropyl Ether (DIPE)	ug/L			<1.0		<1.0		<1.0
Kylene, P-, M-	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
Chlorobromomethane	ug/L		<1.0	<1.0	<1.0	<1.0	<1.0	<1.0

- 1) TPH = total petroleum hydrocarbons (carbon range) analyzed using EPA Method 8015B
- 2) VOCs = volatile organic compounds analyzed using EPA Method 8260B
- 3) mg/L = milligrams per liter
- 4) ug/L = micrograms per liter
- 5) <1.0 = compound not detected at or above the indicated laboratory reporting limit
- 6) Bold type indicates compound was detected.
- 7) -- = not analyzed

Source: United States Geological Survey, "South Whittier," 7.5 Minute Quadrangle, 1998

APCI\AUTOCAD-2006\2006 Q 3\H0287 Fig 01 - LOCATION MAP.dwg

ASSOCIATED PLATING COMPANY 9636 ANN STREET, SANTA FE SPRINGS, CALIFORNIA

SITE LOCATION MAP

EDITE	D BY:	DATE:
	JH	10/2006
		_
		1
		EDITED BY: JH

Appendix A Monitoring Well Sampling Forms

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA

Project Name: APC	Date: 8 34 00
Project No.: Hog87D0a0	Time: 4:00
Employee Name: LD + RH	Page) of /

	TEL: 714.379.1157	FAX.: 714.379.1160			Employee	Name: /	12 +	KH		Page of	
	WELL CONSTR	UCTION DETAILS	WELL	NO:M	N-1			LOCAT	ION SKETCH	:	
	DATES	Casing Type:	VC Screen Typ			Sec six map					
	Constructed:	Diameter: 2	// Diamter:]					
	Developed:	Length:	Length:								
	Last Sampled:	T.D.: 43	Slot Size:								
	WELL CONDITI		Water Depth:		03	53.20	îri ə d	Vonc	of for	er woody	ct
	G.S. Elev.: T.C. Elev.:	Water Depth:	F.P. Thickn				a the	1,3	cabe had	r product not of n kig	<u>^</u>
	W.L. Elev:	Casing Volume:	Turbidity:			, ·	A day	_ (p)	L de	nkta	
		" = 0.65 g/ft; and 6" = 1.5 g/f		:		8	174)	u can	77"	() (
`											
	Well Purging Me	ethod: Mensoon	OUP O Purge V	ol.: 4,	4						
1			1								
	WELL PURGING	G AND RECOVERY	ANALYSIS: &C		mSlcm	ntu					
	Time W.L			pН	_	Turbid.	D _O . /	ORP	Sample No.	REMARKS	
Molbrub		and gallmin	1 31.7	600	7,99	944	$\bot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$				
		35	1,2 32.9	6 2 a	1:44	999	 \				
	7:08	MC	2 22,4	6,59	1.93 1.91	199	 				
	1:15 3	305	3 229	6.50	1.90	909	 / 	 			
		3.05	4.8	4.20	1.10	Til	 /		100		
	1	J. J	7.0				1				
							 X				
							1/1				
							<u> </u>				
	SAMPLING IN						•				
	Sample No.		Sampling Method			Analysis					
	WALORSTO	6 1:20	punp	Vizas 1	LAMBU	VX	+ 1	PH	extended		
			' '		-					<u>v</u>	
	ADDITIONAL	INFORMATION:		L							
	RESTRICTARE	IN CAMPATION.			-			***			
			117 14	١, ,							

13.00 140 33.03 43 19.47 4160

MONITORING WELL SAMPLING FORM

rezources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA TEL.: 714.379.1157 FAX.: 714.379.1160

Project Name: APC	Date: 8 3 66
Project No.: H02870030	Time: 9135
Employee Name: /P+R14	Page of

WELL CON	ISTRUCTI	ON DETAILS		WELL	LOCATION SKETCH:									
DATES Casing Type: PVC Screen Type:														
Constructed:		Diameter:	2"	Diamter:			See site map							
Developed:		Length:		Length:			┪							
Last Sampled:		T.D.: 4	7	Slot Size:										
									1.1	- 11 5lia	HH Loste			
WELL CON	IDITION:	mod	Water l	Depth:	35	,62	wil	is asci	ist 4a	s are slig	, (, , ,)			
G.S. Elev.:			35.62	F.P. Thickn	500			. 0	1 .					
T.C. Elev.:		Water Column:	11:38	Water Odo	r:		TAF	lw d	1005 0	of Fice	product on masurable			
W.L. Elev:		Casing Volume:	. 87	Turbidity:			+	hr s	110hr	but no	+ incusurable			
Note: 2" = 0.16	g/ft; g = 0.65	g/ft; and 6" = 1.5 g	g/ft					1	•					
Well Purgir	ng Method	11/20500)·	Purge V	ol.: Z	15.	5							
	•	PM												
WELL PUR	GING AN	D RECOVERY	Y ANALYS	IS: OC	,	mslem	ntu							
Time	W.L.	Purge Rate	Vol.	Temp.	pН	Conduct.	Turbid.	D.O.	ORP	Sample No.	REMARKS			
9:40	35,54													
34:41	36.30	0.5	0.1	24,2	7.13	. 738	267							
9:42	1	0.5	11	234	6.79	1.55	999				·			
9:43	26.36		3	23.5	6.81	155	942							
9:44	₹.37	0.7	3	23,3	6.77	1.54	683							
9:45	3635	0.8	4	23.4	6.76	1.61	391			1. 1.				
9:46		0.9	3	234	6.76	1.62	366							
9:47	36.39	l _e	35	23.2	Voi H	1.63	242							
/														
			1											
SAMPLIN	G INFORM	AATION:												
Sample No		Time	Sampling	Method	Contain	er	Analysis l	Require	i					
MWZOS	3406	9.49	Prince	22/1	Vous >	LAnder								
		1	pu	2/1		127 11791								
			1											
			1											
ADDITIO	NAL INFO	RMATION:	<u>.</u>		•,									
														
								-						
	-													
							.,							

47.00 -35.02 17.378 11.378 11.4208

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA TEL: 714 379 1157 FAX: 714 379 1160

Project Name: APC	Date: 8 29 106
Project No.: H0287D030	Time: 1():11
Employee Name: LP + R 14	Page of 1

(of)								
000								
See six map								
- DYCO								
IARKS								
,								
186								
fange								

47.60 36.84 10.11 V.16 6066 10110 16176

bruba. Intend

WorleyParsons Komex

MONITORING WELL SAMPLING FORM

resources & energy

5455 GARDEN GROVE BLVD., SECOND FLOOR WESTMINSTER, CA 92683-8201, USA TEL.: 714.379.1157 FAX.: 714.379.1160

Project Name: APC	Date: 8 24 06
Project No.: Haz 870020	Time: 14.30
Employee Name: /P + R 14	Page 7 of 1

WELL CONSTRUCT	ION DETAILS	WELL NO: MN→	LOCATION SKETCH:
DATES	Casing Type:	Screen Type:	2 2 2
Constructed:	Diameter: 2 4	Diamter:	See Six Map
Developed:	Length:	Length:	·
Last Sampled:	T.D.: 47	Slot Size:	
WELL CONDITION:	Water 1	Depth: 37,04	
G.S. Elev.:	Water Depth:	F.P. Thickness: No MIAS	reable - she slight sheen on probe
T.C. Elev.:	Water Column: 9,96	Water Odor: Andivarbon	
W.L. Elev:	Casing Volume: 1.50	Turbidity:	
Note: 2" = 0.16 g/ft; 4" = 0.65	6 g/ft; and 6" = 1.5 g/ft		
Well Purging Method	Provision Byma	Purge Vol.: H. \	

m/Brw

WELL PUR	WELL PURGING AND RECOVERY ANALYSIS:										
Time	W.L.	Purge Rate	Vol.	Temp.	pН	Conduct.	Turbid.	D.O.	ORP	Sample No.	REMARKS
10:33	37.06	441/									
16 341	37.13	0.500	0,1	24/3	6.85	1.49	999				
10:36	37.15	4	1	23.5	6:77	1.47	940				
10:37	37.15	1941/A,n		23.4	6,75	1.69	360				
10:38	37.15		3	23.4	6.75	1.68	208				
10:40	37.15		41	23.4	6,71	1.70	132			;	
10:41	37.16		5	23.5	6.71	1.71	49				
	,										

SAMPLING INFORMATION:

Sample No. Time		Sampling Method	Container .	Analysis Required						
104083406	10:42	ח יינוק בטענים	Vas + 12 Amber	VOCS , TPH	extented	range				
FR/X3106	10:45	1/46	10 10	(1	U	0				
EBO=3104	10:50	PUNO	10 10	17	4					
TBOSSIOU		#-	Vous	10C5						

ADDITIONAL INFORMATION:

47.00 37.04	1.60	
31.07	v 3	

37.04 59.96 7.16 159.86 99.60

CHAIN OF GUSTODY RECORD

SIERRA ANALYTICAL

TEL: 949•348•9389 FAX: 949-348-9115

26052 Merit Circle• Suite 105•Laguna Hills, CA•92653

Date: 5/31/04

26052 Merit Circle• Suite 105•Laguna Hills, CA•92653												I	.ab Pr	oject No	·:		· · · · · · · · · · · · · · · · · · ·
Client: Worky Misons Korry Client Project ID: Analysis Requested										Geotracker EDD Info:							
Client Address: 5455 GWW O		Blud E83	—_H_	02°57D	230		100 K	250	-								Geodackei EDD iiilo.
		- J				24 Hour	Oxyú); J									Client LOGCODE
Client Tel. No.: 714 - 374 - 1/5	Time Requested 48 Hour 72 Hour							\$ 50 E									Chem LOGCODE
	60				-	5 Day	S-Va	经									``
Client Proj. Mgr.: Le Paproch,		· · · · · · · · · · · · · · · · · · ·	L_		Normal	Mobile	3	141									Site Global ID
Client Sample ID.	Date	Time	Matrix	Preservative	Container Type	No. of Containers	120	臣									Field Point Names/ Comments
AW1083106 9	3/04	9:20	GW	HILT	T 400 W	3	x	X									A. Carrier and A. Car
MW2083106	1	9:49			1		X	*		_			35.0		_	_	
MW3083106	1	10:31	1				*	*		_							
MU4083104		10:49	V				1	*								-	
ER083106		10:20	W	1		1.	¥	*							_	-	
FB043104		10:45	W	V	V	V	7	*									
TRO83106	V		W	HVL	awas	`み	4					<u> </u>				1	
1.00																	
							ļ								١.	<u> </u>	
Sampler Signature Lee Pay 1024		Ship	ped Via:				Total Number of Containers Submitted to Sample Disp					Sample Disposal:					
Printed Name; 400 UNOLY		(Car	rier/Waybill Ne	o.)			7 20 Lab					Laboratory					Return to Client
Relinquished Bold	Bate)/ _{/ Rec}	eived By	CH		9-1-06	The delivery of samples and the signature on this chain of custody form constitutes authorization to perform the analysis specified above under SIERRA's Terms and							Lab Disposal*			
complex Parses Korrex	Time:) Con	ipany: 5/	NIA		11:40 Time:	Conditions, unless otherwise agreed upon in writing between SIERRA and CLIENT. *- Samples determined to be hazardous by SIERRA will be returned to CLIENT.								Archive mos.		
Relinquished By:	Date	Rec	eived By:			Date:					Total N	umber	of Co	ontainers	Rec	eived	Other
Company:	Time:	Con	ıpany:			Time:					by Lab						Ouler
4 Relinquished By:	Date	Rec	eived By:		-	Date:								rangan. Marang	ang Ma		
Company Time Company					Time:												
Special Instructions: 5,11 to KP 152	Special Instructions: bill to KPK2+17, send EDF to Sysmin Haman Phase e-milliosults to lindsay, most as a lovely presonation to																
Prose e-miliosults to line	3440	moste	13600	ky paise	D _a lan	+											
la suprochi e worly DNSO	5.0	on_	45														
Rev: 102005		-	T strates.		36	DISTRIBUTI	ON:	White	- To /	Acco	mpany S	Sample	s. Ye	llow - I	abora	tory (opy, Pink - Field Personnel Copy

Appendix B Laboratory Analytical Report

Worley Parsons Komex 5455 Garden Grove Blvd. Suite 200 Westminster CA, 92683 Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
MW1083106	0609011-01	Liquid	08/31/06 09:20	09/01/06 11:40
MW2083106	0609011-02	Liquid	08/31/06 09:49	09/01/06 11:40
MW3083106	0609011-03	Liquid	08/31/06 10:21	09/01/06 11:40
MW4083106	0609011-04	Liquid	08/31/06 10:42	09/01/06 11:40
EB083106	0609011-05	Liquid	08/31/06 10:50	09/01/06 11:40
FB083106	0609011-06	Liquid	08/31/06 10:45	09/01/06 11:40
TB083106	0609011-07	Liquid	08/31/06 00:00	09/01/06 11:40

CASE NARRATIVE

SAMPLE RECEIPT: Samples were received intact, at 4 °C, and accompanied by chain of custody documentation.

PRESERVATION: Samples requiring preservation were verified prior to sample preparation and analysis.

HOLDING TIMES: All holding times were met, unless otherwise noted in the report with data qualifiers.

QA/QC CRITERIA: All quality objective criteria were met, except as noted in the report with data qualifiers.

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

		porting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW1083106 (0609011-01) Liquid	Sampled: 08/31/06 09:20	Recei	ived: 09/(01/06 11:40)				
HC < C8	ND	0.10	mg/L	10	B6I0838	09/07/06	09/08/06	EPA 8015B	
C8 <= HC < C9	ND	0.10	"	"	"	"	"	"	
C9 <= HC < C10	ND	0.10	"	"	"	"	"	"	
$C10 \le HC < C11$	0.13	0.10	"	"	"	"	"	"	
C11 <= HC < C12	0.20	0.10	"	"	"	"	"	"	
C12 <= HC < C14	1.2	0.10	"	"	"	"	"	"	
C14 <= HC < C16	1.6	0.10	"	"	"	"	"	"	
$C16 \le HC < C18$	1.6	0.10	"	"	"	"	"	"	
C18 <= HC < C20	0.94	0.10	"	"	"	"	"	"	
C20 <= HC < C24	2.4	0.10	"	"	"	"	"	"	
C24 <= HC < C28	4.2	0.10	"	"	"	"	"	"	
C28 <= HC < C32	3.9	0.10	"	"	"	"	"	"	
HC >= C32	0.28	0.10	"	"	"	"	"	"	
Total Petroleum Hydrocarbons (C7-C36)	16	0.50	"	"	"	"	"	"	
Surrogate: o-Terphenyl		%	60-	175	"	"	"	"	S-03
O		/0	00-	1/3					3-03
MW2083106 (0609011-02) Liquid	Sampled: 08/31/06 09:49)				3-03
					B6I0838	09/07/06	09/07/06	EPA 8015B	3-03
MW2083106 (0609011-02) Liquid	0.11	Recei	ived: 09/0	01/06 11:40		09/07/06	09/07/06	EPA 8015B	3-03
MW2083106 (0609011-02) Liquid HC < C8	0.11 0.040	Recei	ived: 09/0	01/06 11:4 0	B6I0838				3-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9	0.11 0.040 0.073	0.010 0.010	mg/L	01/06 11:40 1 "	B6I0838	"	"	"	3-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10	0.11 0.040 0.073 0.16	0.010 0.010 0.010	mg/L	01/06 11:40 1 "	B6I0838	"	"	"	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11	0.11 0.040 0.073 0.16 0.14	0.010 0.010 0.010 0.010 0.010	mg/L	01/06 11:40 1 "	B6I0838	" "	" "	" "	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12	0.11 0.040 0.073 0.16 0.14 0.70	0.010 0.010 0.010 0.010 0.010	mg/L "	01/06 11:40 1 "	B6I0838	"	11 11	11 11 11	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14	0.11 0.040 0.073 0.16 0.14 0.70	0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " " " " " " " " " " " " " " " "	" " " " " " " " " " " " " " " " " " " "	11 11 11	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63	0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " "	" " " " " "	11 11 11 11	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63 0.54	Recei 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " " " "	" " " " " " " "	11 11 11 11	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18 C18 <= HC < C20	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63 0.54 1.1	Recei 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	11 11 11 11 11	" " " " " " " " "	0 0 0 0 0	5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18 C18 <= HC < C20 C20 <= HC < C24	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63 0.54 1.1 1.3	Recei 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " " " " " " "	" " " " " " " " " " "		5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18 C18 <= HC < C20 C20 <= HC < C24 C24 <= HC < C28	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63 0.54 1.1 1.3	Recei 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " " " " " " " " "	" " " " " " " " " " " " "		5-03
MW2083106 (0609011-02) Liquid HC < C8 C8 <= HC < C9 C9 <= HC < C10 C10 <= HC < C11 C11 <= HC < C12 C12 <= HC < C14 C14 <= HC < C16 C16 <= HC < C18 C18 <= HC < C20 C20 <= HC < C24 C24 <= HC < C28 C28 <= HC < C32	0.11 0.040 0.073 0.16 0.14 0.70 0.76 0.63 0.54 1.1 1.3 1.1	Recei 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010	mg/L " " " " " " "	1 " " " " " " " " " " " " " " " " " " "	B6I0838	" " " " " " " " " " " " " "	" " " " " " " " " " " " " " "		3-03

Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

Sierra Analytical Labs, Inc.													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
MW3083106 (0609011-03) Liquid	Sampled: 08/31/06 1	0:21 Recei	ived: 09/()1/06 11:40)								
HC < C8	0.051	0.010	mg/L	1	B6I0838	09/07/06	09/07/06	EPA 8015B					
C8 <= HC < C9	0.014	0.010	"	"	"	"	"	"					
C9 <= HC < C10	0.030	0.010	"	"	"	"	"	"					
C10 <= HC < C11	0.076	0.010	"	"	"	"	"	"					
C11 <= HC < C12	0.087	0.010	"	"	"	"	"	"					
C12 <= HC < C14	0.26	0.010	"	"	"	"	"	"					
C14 <= HC < C16	0.34	0.010	"	"	"	"	"	"					
C16 <= HC < C18	0.24	0.010	"	"	"	"	"	"					
C18 <= HC < C20	0.19	0.010	"	"	"	"	"	"					
C20 <= HC < C24	0.29	0.010	"	"	"	"	"	"					
C24 <= HC < C28	0.31	0.010	"	"	"	"	"	"					
C28 <= HC < C32	0.23	0.010	"	"	"	"	"	"					
HC >= C32	0.015	0.010	"	"	"	"	"	"					
Total Petroleum Hydrocarbons (C7-C36)	2.1	0.050	"	"	"	"	"	"					
Surrogate: o-Terphenyl		102 %	60-	175	"	"	"	"					
MW4083106 (0609011-04) Liquid	Sampled: 08/31/06 1	0:42 Recei	ived: 09/(01/06 11:40)								
HC < C8	0.084	0.010	mg/L	1	B6I0838	09/07/06	09/08/06	EPA 8015B					
C8 <= HC < C9	0.031	0.010	"	"	"	"	"	"					
C9 <= HC < C10	0.056	0.010	"	"	"	"	"	"					
C10 <= HC < C11	0.13	0.010	"	"	"	"	"	"					
C11 <= HC < C12	0.17	0.010	"	"	"	"	"	"					
C12 <= HC < C14	0.40	0.010	"	"	"	"	"	"					
C14 <= HC < C16	0.56	0.010	"	"	"	"	"	"					
C16 <= HC < C18	0.39	0.010	"	"	"	"	"	"					
C18 <= HC < C20	0.27	0.010	"	"	"	"	"	"					
C20 <= HC < C24	0.48	0.010	"	"	"	"	"	"					
C24 <= HC < C28	0.57	0.010	"	"	"	"	"	"					
C28 <= HC < C32	0.46	0.010	"	"	"	"	"	"					
HC >= C32	0.030	0.010	"	"	"	"	"	"					
Total Petroleum Hydrocarbons (C7-C36)	3.6	0.050	"	"	"	"	"	"					
Surrogate: o-Terphenyl		121 %	60-	175	n,	"	"	n					

Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID Sierra Analytical Labs, Inc.

	Bretta Analytical Labs, Inc.													
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes					
EB083106 (0609011-05) Liquid	Sampled: 08/31/06 10:50	Receive	d: 09/01/	06 11:40										
HC < C8	ND	0.010	mg/L	1	B6I0838	09/07/06	09/07/06	EPA 8015B						
C8 <= HC < C9	ND	0.010	"	"	"	"	"	"						
C9 <= HC < C10	ND	0.010	"	"	"	"	"	"						
$C10 \le HC < C11$	ND	0.010	"	"	"	"	"	"						
C11 <= HC < C12	ND	0.010	"	"	"	"	"	"						
C12 <= HC < C14	ND	0.010	"	"	"	"	"	"						
C14 <= HC < C16	ND	0.010	"	"	"	"	"	"						
C16 <= HC < C18	ND	0.010	"	"	"	"	"	"						
C18 <= HC < C20	ND	0.010	"	"	"	"	"	"						
C20 <= HC < C24	ND	0.010	"	"	"	"	"	"						
C24 <= HC < C28	ND	0.010	"	"	"	"	"	"						
C28 <= HC < C32	ND	0.010	"	"	"	"	"	"						
HC >= C32	ND	0.010	"	"	"	"	"	"						
Total Petroleum Hydrocarbons (C7-C36)	ND	0.050	"	"	"	"	"	"						
Surrogate: o-Terphenyl		101 %	60-	175	"	"	"	"						
FB083106 (0609011-06) Liquid	Sampled: 08/31/06 10:45	Receive	d: 09/01/	06 11:40										
HC < C8	ND	0.010	mg/L	1	B6I0838	09/07/06	09/07/06	EPA 8015B						
C8 <= HC < C9	ND	0.010	"	"	"	"	"	"						
C9 <= HC < C10	ND	0.010	"	"	"	"	"	"						
C10 <= HC < C11	ND	0.010	"	"	"	"	"	"						
C11 <= HC < C12	ND	0.010	"	"	"	"	"	"						
C12 <= HC < C14	ND	0.010	"	"	"	"	"	"						
C14 <= HC < C16	ND	0.010	"	"	"	"	"	"						
C16 <= HC < C18	ND	0.010	"	"	"	"	"	"						
C18 <= HC < C20	ND	0.010	"	"	"	"	"	"						
C20 <= HC < C24	ND	0.010	"	"	"	"	"	"						
C24 <= HC < C28	ND	0.010	"	"	"	"	"	"						
C28 <= HC < C32	ND	0.010	"	"	"	"	"	"						
HC >= C32	ND	0.010	"	"	"	"	"	"						
Total Petroleum Hydrocarbons (C7-C36)	ND	0.050	"	"	"	"	"	"						
Surrogate: o-Terphenyl		95.0 %	60-	175	"	"	"	"						

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Sierra Anarytear Labs, nic.												
Analyte	Rej Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
MW1083106 (0609011-01) Liquid	Sampled: 08/31/06 09:20	Recei	ived: 09/(01/06 11:40)							
Benzene	ND	1.0	μg/L	1	B6I0614	09/05/06	09/05/06	EPA 8260B				
Bromobenzene	ND	1.0	"	"	"	"	"	"				
Bromochloromethane	ND	1.0	"	"	"	"	"	"				
Bromodichloromethane	ND	1.0	"	"	"	"	"	"				
Bromoform	ND	1.0	"	"	"	"	"	"				
Bromomethane	ND	1.0	"	"	"	"	"	"				
n-Butylbenzene	ND	1.0	"	"	"	"	"	"				
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"				
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"				
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"				
Chlorobenzene	ND	1.0	"	"	"	"	"	"				
Chloroethane	ND	1.0	"	"	"	"	"	"				
Chloroform	ND	1.0	"	"	"	"	"	"				
Chloromethane	ND	1.0	"	"	"	"	"	"				
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"				
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"				
Dibromochloromethane	ND	1.0	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"		"				
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"		"				
Dibromomethane	ND	1.0	"	"	"	"		"				
1,2-Dichlorobenzene	ND	1.0	"	"	"	"		"				
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	m .				
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	m .				
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"				
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	8.4	1.0	"	"	"	"	"	"				
trans-1,2-Dichloroethene	3.6	1.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	m .				
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	m .				
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"				
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
Ethylbenzene	ND	1.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"				
Isopropylbenzene	ND	1.0	"	"	"	"	"	"				
p-Isopropyltoluene	1.8	1.0	"	"	"	"	"	"				
p asopropyreomene	1.0	1.0										

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Rej Result	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						Тершей	7 mary zeu	Wethou	110103
MW1083106 (0609011-01) Liquid	Sampled: 08/31/06 09:20	Recei	ivea: 09/0	1/06 11:40	U				
Methylene chloride	ND	1.0	$\mu g/L$	1	B6I0614	09/05/06	09/05/06	EPA 8260B	
Methyl tert-butyl ether	2.0	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	21	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	9.9	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	1	07 %	86	118	"	"	"	"	
Surrogate: Toluene-d8	1	04 %	88-	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	1	07 %	86	115	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Reg Result	oorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW2083106 (0609011-02) Liquid	Sampled: 08/31/06 09:49	Recei	ived: 09/0	1/06 11:40)				
Benzene	3.1	1.0	μg/L	1	B6I0614	09/05/06	09/05/06	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	12	1.0	"	"	"	"	"	"	
tert-Butylbenzene	1.7	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	57	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	3.2	1.0	"	"	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

		oorting				_			
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW2083106 (0609011-02) Liquid	Sampled: 08/31/06 09:49	Recei	ived: 09/01	/06 11:40	0				
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/05/06	EPA 8260B	
Methyl tert-butyl ether	3.0	1.0	"	"	"	"	"	"	
Naphthalene	12	1.0	"	"	"	"	"	"	
n-Propylbenzene	3.5	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	47	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	1	03 %	86-11	18	"	"	"	"	
Surrogate: Toluene-d8	1	05 %	88-11	10	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	1	09 %	86-11	15	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Rej Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
						Trepured	7 mary zea	Wellou	
MW3083106 (0609011-03) Liquid	Sampled: 08/31/06 10:21								
Benzene	3.7	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Bromobenzene	ND	1.0	"						
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	11	1.0	"	"	"	"	"	"	
tert-Butylbenzene	3.4	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Ethyltenzene	3.1	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	7 4	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	
p-1sopropyrioruene	ND	1.0							

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Re Result	porting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW3083106 (0609011-03) Liquid	Sampled: 08/31/06 10:21	Recei	ived: 09/01	1/06 11:40)				
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Methyl tert-butyl ether	2.2	1.0	"	"	"	"	"	"	
Naphthalene	8.7	1.0	"	"	"	"	"	"	
n-Propylbenzene	5.3	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	1.6	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	3.4	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	1.2	1.0	"	"	"	"	"	"	
Vinyl chloride	58	1.0	"	"	"	"	"	"	
m,p-Xylene	3.1	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane	9	1.2 %	86-1	18	"	"	"	"	
Surrogate: Toluene-d8		100 %	88-1		"	"	"	"	
Surrogate: 4-Bromofluorobenzene		114 %	86-1		"	"	"	"	

Project : APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Paparting												
Analyte	Rej Result	Dorting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes			
MW4083106 (0609011-04) Liquid	Sampled: 08/31/06 10:42	Rece	ived: 09/0	01/06 11:40								
Benzene	7.6	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B				
Bromobenzene	ND	1.0	"	"	"	"	"	"				
Bromochloromethane	ND	1.0	"	"	"	"	"	"				
Bromodichloromethane	ND	1.0	"	"	"	"	"	"				
Bromoform	ND	1.0	"	"	"	"	"	"				
Bromomethane	ND	1.0	"	"	"	"	"	"				
n-Butylbenzene	ND	1.0	"	"	"	"	"	"				
sec-Butylbenzene	13	1.0	"	"	"	"	"	"				
tert-Butylbenzene	1.4	1.0	"	"	"	"	"	"				
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"				
Chlorobenzene	ND	1.0	"	"	"	"	"	"				
Chloroethane	ND	1.0	"	"	"	"	"	"				
Chloroform	ND	1.0	"	"	"	"	"	"				
Chloromethane	ND	1.0	"	"	"	"	"	"				
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"				
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"				
Dibromochloromethane	ND	1.0	"	"	"	"	"	"				
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"				
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"				
Dibromomethane	ND	1.0	"	"	"	"	"	"				
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"				
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"				
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"				
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"				
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"				
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"				
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"				
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"				
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"				
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"				
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"				
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"				
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"				
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"				
Ethylbenzene	ND	1.0	"	"	"	"	"	"				
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"				
Isopropylbenzene	87	1.0	"	"	"	"	"	"				
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"				
LLL)	1,2											

Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	eporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
MW4083106 (0609011-04) Liquid	Sampled: 08/31/06 10:4	2 Recei	ived: 09/0	1/06 11:40)				
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Methyl tert-butyl ether	2.8	1.0	"	"	"	"	"	"	
Naphthalene	1.9	1.0	"	"	"	"	"	"	
n-Propylbenzene	8.9	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	1.2	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	54	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethane		89.4 %	86-1	118	"	"	"	"	
Surrogate: Toluene-d8		103 %	88-1	110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		109 %	86-1	115	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
EB083106 (0609011-05) Liquid	Sampled: 08/31/06 10:50	Receive	d: 09/01/	06 11:40					
Benzene	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	2.3	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
EB083106 (0609011-05) Liquid	Sampled: 08/31/06 10:50	Receive	d: 09/01	/06 11:40					
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	e	89.4 %	86	-118	"	"	"	"	
Surrogate: Toluene-d8		101 %	88	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	?	109 %	86	-115	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB083106 (0609011-06) Liquid	Sampled: 08/31/06 10:45	Receive	d: 09/01/	06 11:40			•		
Benzene	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	1.0	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"		"	"	
1,3-Dichloropropane	ND	1.0	"	"	"		"	"	
2,2-Dichloropropane	ND	1.0	"	"	"		"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"		"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"		"	"	
Di-isopropyl ether	ND	1.0	"	"	"		"	"	
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Ethylbenzene Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND ND	1.0	"	"	"	"	"	"	
p-1sopropyrioruelle	ND	1.0							

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
FB083106 (0609011-06) Liquid	Sampled: 08/31/06 10:45	Receive	d: 09/01/	06 11:40					
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	e	90.4 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		101 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2	106 %	86-	-115	"	"	"	"	

Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	l Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB083106 (0609011-07) Liquid	Sampled: 08/31/06 00:00	Receive	d: 09/01/	06 11:40					
Benzene	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Bromobenzene	ND	1.0	"	"	"	"	"	"	
Bromochloromethane	ND	1.0	"	"	"	"	"	"	
Bromodichloromethane	ND	1.0	"	"	"	"	"	"	
Bromoform	ND	1.0	"	"	"	"	"	"	
Bromomethane	ND	1.0	"	"	"	"	"	"	
n-Butylbenzene	ND	1.0	"	"	"	"	"	"	
sec-Butylbenzene	ND	1.0	"	"	"	"	"	"	
tert-Butylbenzene	ND	1.0	"	"	"	"	"	"	
Carbon tetrachloride	ND	1.0	"	"	"	"	"	"	
Chlorobenzene	ND	1.0	"	"	"	"	"	"	
Chloroethane	ND	1.0	"	"	"	"	"	"	
Chloroform	ND	1.0	"	"	"	"	"	"	
Chloromethane	ND	1.0	"	"	"	"	"	"	
2-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
4-Chlorotoluene	ND	1.0	"	"	"	"	"	"	
Dibromochloromethane	ND	1.0	"	"	"	"	"	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	"	"	"	"	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	"	"	"	"	"	
Dibromomethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,3-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,4-Dichlorobenzene	ND	1.0	"	"	"	"	"	"	
Dichlorodifluoromethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,2-Dichloroethane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloroethene	ND	1.0	"	"	"	"	"	"	
cis-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
trans-1,2-Dichloroethene	ND	1.0	"	"	"	"	"	"	
1,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,3-Dichloropropane	ND	1.0	"	"	"	"	"	"	
2,2-Dichloropropane	ND	1.0	"	"	"	"	"	"	
1,1-Dichloropropene	ND	1.0	"	"	"	"	"	"	
cis-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
trans-1,3-Dichloropropene	ND	1.0	"	"	"	"	"	"	
Di-isopropyl ether	ND	1.0	"	"	"	"	"	"	
Ethyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Ethylbenzene	ND	1.0	"	"	"	"	"	"	
Hexachlorobutadiene	ND	1.0	"	"	"	"	"	"	
Isopropylbenzene	ND	1.0	"	"	"	"	"	"	
p-Isopropyltoluene	ND	1.0	"	"	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B Sierra Analytical Labs, Inc.

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
TB083106 (0609011-07) Liquid	Sampled: 08/31/06 00:00	Receive	d: 09/01/	06 11:40					
Methylene chloride	ND	1.0	μg/L	1	B6I0614	09/05/06	09/06/06	EPA 8260B	
Methyl tert-butyl ether	ND	1.0	"	"	"	"	"	"	
Naphthalene	ND	1.0	"	"	"	"	"	"	
n-Propylbenzene	ND	1.0	"	"	"	"	"	"	
Styrene	ND	1.0	"	"	"	"	"	"	
Tert-amyl methyl ether	ND	1.0	"	"	"	"	"	"	
Tert-butyl alcohol	ND	5.0	"	"	"	"	"	"	
1,1,1,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2,2-Tetrachloroethane	ND	1.0	"	"	"	"	"	"	
Tetrachloroethene	ND	1.0	"	"	"	"	"	"	
Toluene	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,2,4-Trichlorobenzene	ND	1.0	"	"	"	"	"	"	
1,1,1-Trichloroethane	ND	1.0	"	"	"	"	"	"	
1,1,2-Trichloroethane	ND	1.0	"	"	"	"	"	"	
Trichloroethene	ND	1.0	"	"	"	"	"	"	
Trichlorofluoromethane	ND	1.0	"	"	"	"	"	"	
1,2,3-Trichloropropane	ND	1.0	"	"	"	"	"	"	
1,2,4-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
1,3,5-Trimethylbenzene	ND	1.0	"	"	"	"	"	"	
Vinyl chloride	ND	1.0	"	"	"	"	"	"	
m,p-Xylene	ND	1.0	"	"	"	"	"	"	
o-Xylene	ND	1.0	"	"	"	"	"	"	
Surrogate: Dibromofluoromethan	e	89.4 %	86-	-118	"	"	"	"	
Surrogate: Toluene-d8		102 %	88-	-110	"	"	"	"	
Surrogate: 4-Bromofluorobenzene	2	110 %	86-	115	"	"	"	"	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Total Petroleum Hydrocarbons Carbon Range Analysis by GC-FID - Quality Control Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B6I0838 - EPA 3510C Sep Fu	nnel								
Blank (B6I0838-BLK1)				Prepared & Ana	alyzed: 09/07/0)6			
HC < C8	ND	0.010	mg/L						
C8 <= HC < C9	ND	0.010	"						
C9 <= HC < C10	ND	0.010	"						
C10 <= HC < C11	ND	0.010	"						
C11 <= HC < C12	ND	0.010	"						
C12 <= HC < C14	ND	0.010	"						
C14 <= HC < C16	ND	0.010	"						
C16 <= HC < C18	ND	0.010	"						
C18 <= HC < C20	ND	0.010	"						
C20 <= HC < C24	ND	0.010	"						
C24 <= HC < C28	ND	0.010	"						
C28 <= HC < C32	ND	0.010	"						
$HC \gg C32$	ND	0.010	"						
Total Petroleum Hydrocarbons (C7-C36)	ND	0.050	"						
Surrogate: o-Terphenyl	0.130		"	0.100	130	60-175			
LCS (B6I0838-BS1)				Prepared & Ana	alyzed: 09/07/0)6			
Diesel Range Organics (C10-C24)	0.674	0.050	mg/L	0.750	89.9	80-120			
LCS (B6I0838-BS2)				Prepared & Ana	alyzed: 09/07/0)6			
Diesel Range Organics (C10-C24)	0.751	0.050	mg/L	0.750	100	80-120			
LCS Dup (B6I0838-BSD1)				Prepared & Ana	alyzed: 09/07/0)6			
Diesel Range Organics (C10-C24)	0.702	0.050	mg/L	0.750	93.6	80-120	4.07	30	

Project Number: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	

Batch B6I0614 - EPA 5030B P & T

Blank (B6I0614-BLK1)				Prepared & Analyzed: 09/05/06
Benzene	ND	1.0	μg/L	
Bromobenzene	ND	1.0	"	
Bromochloromethane	ND	1.0	"	
Bromodichloromethane	ND	1.0	"	
Bromoform	ND	1.0	"	
Bromomethane	ND	1.0	"	
n-Butylbenzene	ND	1.0	"	
sec-Butylbenzene	ND	1.0	"	
tert-Butylbenzene	ND	1.0	"	
Carbon tetrachloride	ND	1.0	"	
Chlorobenzene	ND	1.0	"	
Chloroethane	ND	1.0	"	
Chloroform	ND	1.0	"	
Chloromethane	ND	1.0	"	
2-Chlorotoluene	ND	1.0	"	
4-Chlorotoluene	ND	1.0	"	
Dibromochloromethane	ND	1.0	"	
1,2-Dibromo-3-chloropropane	ND	5.0	"	
1,2-Dibromoethane (EDB)	ND	1.0	"	
Dibromomethane	ND	1.0	"	
1,2-Dichlorobenzene	ND	1.0	"	
1,3-Dichlorobenzene	ND	1.0	"	
1,4-Dichlorobenzene	ND	1.0	"	
Dichlorodifluoromethane	ND	1.0	"	
1,1-Dichloroethane	ND	1.0	"	
1,2-Dichloroethane	ND	1.0	"	
1,1-Dichloroethene	ND	1.0	"	
cis-1,2-Dichloroethene	ND	1.0	"	
trans-1,2-Dichloroethene	ND	1.0	"	
1,2-Dichloropropane	ND	1.0	"	
1,3-Dichloropropane	ND	1.0	"	
2,2-Dichloropropane	ND	1.0	"	
1,1-Dichloropropene	ND	1.0	"	
cis-1,3-Dichloropropene	ND	1.0	"	
trans-1,3-Dichloropropene	ND	1.0	"	
Di-isopropyl ether	ND	1.0	"	
Ethyl tert-butyl ether	ND	1.0	"	

Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch B6I0614 - EPA 5030B P & T

Blank (B6I0614-BLK1)				Prepared & Analyzed: 09/05/06	
Ethylbenzene	ND	1.0	μg/L		
Hexachlorobutadiene	ND	1.0	"		
Isopropylbenzene	ND	1.0	"		
p-Isopropyltoluene	ND	1.0	"		
Methylene chloride	ND	1.0	"		
Methyl tert-butyl ether	ND	1.0	"		
Naphthalene	ND	1.0	"		
n-Propylbenzene	ND	1.0	"		
Styrene	ND	1.0	"		
Tert-amyl methyl ether	ND	1.0	"		
Tert-butyl alcohol	ND	5.0	"		
1,1,1,2-Tetrachloroethane	ND	1.0	"		
1,1,2,2-Tetrachloroethane	ND	1.0	"		
Tetrachloroethene	ND	1.0	"		
Toluene	ND	1.0	"		
1,2,3-Trichlorobenzene	ND	1.0	"		
1,2,4-Trichlorobenzene	ND	1.0	"		
1,1,1-Trichloroethane	ND	1.0	"		
1,1,2-Trichloroethane	ND	1.0	"		
Trichloroethene	ND	1.0	"		
Trichlorofluoromethane	ND	1.0	"		
1,2,3-Trichloropropane	ND	1.0	"		
1,2,4-Trimethylbenzene	ND	1.0	"		
1,3,5-Trimethylbenzene	ND	1.0	"		
Vinyl chloride	ND	1.0	"		
m,p-Xylene	ND	1.0	"		
o-Xylene	ND	1.0	"		
Surrogate: Dibromofluoromethane	55.6		"	50.0 111 86-118	
Surrogate: Toluene-d8	52.5		"	50.0 105 88-110	
Surrogate: 4-Bromofluorobenzene	53.8		"	50.0 108 86-115	

Project Number: H0287D020 Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

RPD

%REC

Volatile Organics & Fuel Oxygenates (GC/MS) by EPA Method 8260B - Quality Control

Sierra Analytical Labs, Inc.

Spike

Source

Reporting

Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch B6I0614 - EPA 5030B P & T										
LCS (B6I0614-BS1)				Prepared	& Analyze	ed: 09/05/	06			
Benzene	52.8	1.0	μg/L	50.0	-	106	80-120			
Chlorobenzene	47.5	1.0	"	50.0		95.0	80-120			
1,1-Dichloroethene	57.5	1.0	"	50.0		115	80-120			
Toluene	53.0	1.0	"	50.0		106	80-120			
Trichloroethene	52.9	1.0	"	50.0		106	80-120			
Matrix Spike (B6I0614-MS1)	Sour	ce: 060901	9-05	Prepared:	09/05/06	Analyzed	1: 09/06/06			
Benzene	38.2	1.0	μg/L	50.0	ND	76.4	37-151			
Chlorobenzene	40.5	1.0	"	50.0	ND	81.0	37-160			
1,1-Dichloroethene	38.6	1.0	"	50.0	ND	77.2	50-150			
Toluene	39.1	1.0	"	50.0	ND	78.2	47-150			
Trichloroethene	37.2	1.0	"	50.0	ND	74.4	71-157			
Matrix Spike Dup (B6I0614-MSD1)	Sour	ce: 060901	9-05	Prepared:	09/05/06	Analyzed	1: 09/06/06			
Benzene	36.4	1.0	μg/L	50.0	ND	72.8	37-151	4.83	30	
Chlorobenzene	38.6	1.0	"	50.0	ND	77.2	37-160	4.80	30	
1,1-Dichloroethene	35.1	1.0	"	50.0	ND	70.2	50-150	9.50	30	
Toluene	41.2	1.0	"	50.0	ND	82.4	47-150	5.23	30	
Trichloroethene	37.2	1.0	"	50.0	ND	74.4	71-157	0.00	30	

Project: APC
Project Number: H0287D020
Project Manager: Lee Paprocki

Reported: 09/13/06 11:20

Notes and Definitions

S-03 Surrogate diluted out.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

RPD Relative Percent Difference